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Abstract
The Schrödinger equation idψ/dt = ηHψ with a large parameter η and an
appropriate 3 × 3 matrix H is studied by the exact WKB method, i.e. WKB
analysis based on the Borel resummation. Transition probabilities of solutions
of the equation are explicitly calculated with the help of the connection formula
for WKB solutions. Since a 3×3 system is considered, addition of new Stokes
curves is necessary to obtain the correct connection formula (Berk–Nevins–
Roberts’ observation), and we present a practically useful procedure for finding
required new Stokes curves.

PACS numbers: 03.65.Sq, 02.30.Hq

1. Introduction

In this paper we discuss a Landau–Zener type problem for three levels (cf [CH,BE,J2,CLP,JP]
and references cited there) from the viewpoint of exact WKB analysis, i.e. WKB analysis based
on the Borel resummation (cf [V, P, DDP, AKT1, AKT2, T2] and references cited there). To
be more specific, we consider the following equation

i
d

dt
ψ = ηH(t, η)ψ, (1.1)

where ψ is a 3-vector andH(t, η) is a 3 × 3 matrix with polynomial entries that depends on a
large parameter η in the manner specified below.

H(t, η) = H0(t) + η−1/2H1/2, (1.2)

where

H0(t) =



ρ1(t)

0
ρ2(t)

0
ρ3(t)


 (1.3)
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with ρj (t) (j = 1, 2, 3) being a real polynomial and

H1/2 =
( 0 c12 c13

c12 0 c23

c13 c23 0

)
(1.4)

with cjk (1 � j, k � 3) being a complex constant. Throughout this paper we further assume

(ρ1 − ρ2)(ρ1 − ρ3)(ρ2 − ρ3) = 0 has only real and simple zeros. (1.5)

Our task is then to relate the behaviour of ψ(t) for t → −∞ and that for t → +∞, that
is, the transition probabilities. To formulate the problem mathematically, we follow the idea
of Brundobler–Elser [BE] that one should compare the asymptotic behaviour of ψ(t) near
t = −∞ and that near t = +∞. In our approach, we consider WKB solutions of (1.1) that can
be readily expanded asymptotically near t = −∞ or +∞ and we then apply the connection
formula to relate the behaviour of WKB solutions near t = −∞ with that near t = +∞.
Although this may sound a traditional and standard approach, there exist substantial problems
in putting this program into practice, due to the fact that (1.1) is a 3 × 3, not 2 × 2, system.

The first problem is that WKB analysis for systems is not well-developed, at least compared
with that for single equations. The second problem is that Stokes curves for an n× n system
(n � 3) may cross and that we have to add new Stokes curves to obtain a correct and consistent
connection formula for WKB solutions, as was first observed by Berk–Nevins–Roberts [BNR].
(The necessity of additional new Stokes curves seems to be closely related to the obstacle
against the construction of a dissipative domain in the approach with complex WKB method.
See [JP, section 7] for illuminating discussions concerning the obstacle.)

The first issue has recently been essentially ameliorated by one of us [T2] through the
establishment of an exact WKB theoretic result that enables us to reduce a system to a canonical
one near a (double) turning point. (For the convenience of the reader, we give in the appendix a
summary of the core part of [T2] that is relevant to our analysis, omitting the detailed estimation
of the coefficients of η−j of the transformation. See also [CLP] for a C∞-counterpart of [T2].
Note, however, that results in the C∞-category are not suited for the exact WKB analysis,
which makes essential use of the analytic structure of the Borel transformed WKB solutions.)

The second issue is discussed in section 3 with an emphasis on showing a practically
efficient rule to detect the virtual turning point (called a new turning point in [AKT1]) from
which a required new Stokes curve emanates. We show in section 2 (a simple model example)
and in section 4 (the general case) how effectively these mathematical results are used to
calculate the transition probabilities of solutions of equation (1.1). We note that most of the
results given in sections 3 and 4 can be generalized to equations for n-levels with n � 4,
although, for the sake of simplicity, we confine our consideration to the 3-level problem.

In ending this introduction, we remark that the particular η-dependence ofH given in (1.2)
neatly explains, as we show in this paper, the non-adiabatic character of the Landau–Zener
problem, as was first observed by Hagedorn [H] in the 2-level case (see also [J1]). It may
be worth mentioning that the title of [Z] clearly indicates the non-adiabatic character of
the problem. We also note that, as is calculated including exponentially small off-diagonal
elements in [JP] (cf [J2] also), the diagonal elements of the S-matrix are close to 1 in the
adiabatic (in the sense of [CLP]) case with no real turning points, showing a clear contrast
between adiabatic type problems and Landau–Zener type problems.
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2. Landau–Zener model for three levels

In this section we study the following straightforward generalization to three levels of the
original Landau–Zener model for two levels:

i
d

dt

(
ψ1

ψ2

ψ3

)
= η

[(
b1t + a 0 0

0 b2t 0
0 0 b3t

)
+ η−1/2

( 0 c12 c13

c12 0 c23

c13 c23 0

)](
ψ1

ψ2

ψ3

)
, (2.1)

where bj ’s are mutually distinct real constants and a is a real constant. That is, we study (1.1)
with ρ1(t) = b1t + a, ρ2(t) = b2t and ρ3(t) = b3t . Note that every three level problem with
ρj (t) being a real polynomial of degree one can be reduced to the above form by using the
translation t �→ t − t0 and the gauge transformation ψ = t (ψ1, ψ2, ψ3) �→ eiθtψ where t0 and
θ are real constants. In order to fix the situation, we suppose

0 < b1 < b2 < b3 and 0 < a. (2.2)

Letting tjk denote the solution of the equation ρj (t) = ρk(t), we then find

0 = t23 < t13 < t12. (2.3)

The three level problem (2.1) has a WKB solution ψ(j) (j = 1, 2, 3) of the following
form:

ψ(j) = η−1/2 exp

(
η

i

∫ t

0
ρj (t) dt

)
(ρk − ρj )

−κkj (ρl − ρj )
−κlj (e(j) + O(η−1/2)), (2.4)

where e(j) = t (e
(j)

1 , e
(j)

2 , e
(j)

3 ) is a unit vector satisfying

e
(α)
β = δαβ (α, β = 1, 2, 3), (2.5)

καβ (α, β = 1, 2, 3) denotes a Landau–Zener parameter

καβ = i|cαβ |2
bβ − bα

(2.6)

(we define cαβ = cβα whenα > β for the notational convenience), and {j, k, l} is a permutation
of {1, 2, 3}, i.e. {j, k, l} = {1, 2, 3} holds as sets. (Here and in what follows we add an extra
factor η−1/2 to WKB solutions so that their Borel transform and Borel sum may be readily
defined.) We further assume that the branch of multivalued analytic functions (ρα − ρβ)

−καβ
is determined as follows:

As t → −∞ arg(ρα − ρβ) = 0 for α < β,

arg(ρα − ρβ) = π for α > β.
(2.7)

As t → +∞ arg(ρα − ρβ) = −π for α < β,

arg(ρα − ρβ) = 0 for α > β.
(2.8)

See the appendix for the construction of a WKB solution. Note that solution (2.4) is normalized
in such a way that the endpoint of the frequency

∫ t
0 ρj (t) dt is taken to be the origin etc.

If we introduce new fundamental systems ψ±,(j) of solutions of (2.1) defined by

ψ±,(j) = N±,(j)ψ(j) (2.9)

with
N−,(1) = e−iπ(κ12+κ13) + O(η−1/2),

N−,(2) = e−iπκ23 + O(η−1/2),

N−,(3) = 1 + O(η−1/2),

(2.10)

N+,(1) = 1 + O(η−1/2),

N+,(2) = e−iπκ12 + O(η−1/2),

N+,(3) = e−iπ(κ23+κ13) + O(η−1/2),

(2.11)
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then ψ±,(j)’s respectively show the following asymptotic behaviour near t = ±∞:

lim
t→±∞ |ψ±,(j)

k (t)| = δjk (j, k = 1, 2, 3). (2.12)

Hence, letting S̃ denote the connection matrix for the WKB solution ψ(j) from t = −∞ to
+∞, we find that the matrix(

N+,(1) 0 0
0 N+,(2) 0
0 0 N+,(3)

)−1

S̃

(
N−,(1) 0 0

0 N−,(2) 0
0 0 N−,(3)

)
(2.13)

and the square of the modulus of each entry of (2.13) respectively describe the S-matrix and the
transition probabilities for equation (2.1). In what follows we try to compute the connection
matrix S̃.

A turning point of (2.1) is a crossing point of two energy levels, that is, a point tjk satisfying
ρj (tjk) = ρk(tjk) (j, k = 1, 2, 3). A Stokes curve of (2.1) is, by definition, a solution curve of
the direction field

Im

(
1

i
(ρj (t)− ρk(t)) dt

)
= 0 (2.14)

emanating from a turning point tjk . A new Stokes curve is defined in a similar manner by
replacing a turning point with a virtual turning point (cf [AKT1]; see section 3 also). In
what follows we use the terminology ‘a (new) Stokes curve of type (j, k)’ to emphasize the
index of ρ(t) appearing in the definition (2.14) of the corresponding direction field. Another
terminology ‘a (new) Stokes curve of type (j > k)’ is also used to specify the dominance
relation between WKB solutions on the curve (for example, ‘type (j > k)’ indicates that the
WKB solution ψ(j) is dominant over the WKB solution ψ(k) along the Stokes curve). Note
that the dominance relation is uniquely determined for each Stokes curve, by which we mean,
as a convention, a curvilinear half line starting from an (ordinary or virtual) turning point and
going toward a point at infinity, unless any two (ordinary or virtual) turning points of the same
type (j, k) are connected by a Stokes curve. The Stokes geometry, i.e. the configuration of
turning points and (new) Stokes curves of (2.1) can be illustrated as in figure 1 where the small
dots (resp. small rectangles) designate ordinary (resp. virtual) turning points, all of which lie
on the real axis. Equation (2.1) has two relevant virtual turning points t∗ and t̃∗. (We know by
(3.3)K,T in section 3 that they respectively satisfy∫ t∗

t13

ρ1 dt =
∫ t∗

t23

ρ2 dt +
∫ t23

t13

ρ3 dt (2.15)

and ∫ t̃∗

t12

ρ2 dt =
∫ t̃∗

t13

ρ3 dt +
∫ t13

t12

ρ1 dt. (2.16)

Among the solutions of these equations we choose t∗ = a
b2−b1

(
1 − (

b3−b2
b3−b1

)1/2)
and t̃∗ =

a((b2 − b1)(b3 − b1))
−1/2; new Stokes curves emanating from other solutions do not pass

ordered crossing points A, A′, B or B ′.) As is indicated by a broken segment in figure 1,
the portion of a new Stokes curve containing a virtual turning point is irrelevant to the Stokes
phenomena (see [AKT1, p 77]). Each Borel resummed WKB solution ψ(j) of (2.1) thus
becomes well-defined except on solid segments of Stokes curves shown in figure 1.

Remark 2.1. As is expounded in section 3, figure 1 is obtained by the following procedure:
we first draw the ordinary Stokes curves and then, to resolve ordered crossing points A, A′, B
andB ′ (without worrying about non-ordered crossing pointsC andC ′), we locate the necessary
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Figure 1. Stokes geometry of equation (2.1).

virtual turning points t∗ and t̃∗ by (2.15) and (2.16), and we add new Stokes curves passing
through these virtual turning points to obtain figure 1, which is complete in the sense that no
ordered crossing points remain. It is worth mentioning that, in the case of equation (2.1), instead
of such a ‘pragmatic’ method (completely relying on computer-graphics), we can make use
of the simple character of (2.1) to employ the following somewhat more ‘axiomatic’ method
to obtain the same figure 1: for equation (2.1) we can analytically determine the location
of all possible virtual turning points, that is, the t-coordinate of self-intersection points of a
bicharacteristic chain (cf section 3), by the following equations:∫ t

tjk

ρj dt =
∫ t

tjk

ρk dt + n", (2.17)

where (j, k) ∈ {(1, 2), (1, 3), (2, 3)}, n runs over all (positive and negative) integers, and

" =
∫ t12

t13

ρ1 dt +
∫ t23

t12

ρ2 dt +
∫ t13

t23

ρ3 dt (2.18)

denotes the period of the equation (2.1). (For example, (2.15) (resp. (2.16)) is a special case
of (2.17) with (j, k) = (1, 2) and n = −1 (resp. (j, k) = (2, 3) and n = −1). See section 3
and [AKT1, proposition 2.3].) Since all possible virtual turning points, i.e. solutions of (2.17),
form a discrete subset of Ct in this case (in general they become dense, as there are many
periods; it is the reason why we cannot use this ‘axiomatic’ method for the general case),
restricting our consideration to a compact set in Ct , we can also draw all possible new Stokes
curves numerically. The whole of the ordinary and possible new Stokes curves thus drawn
fabricates a ‘network of Stokes curves’. This mesh-like figure partitions each (ordinary or new)
Stokes curve into infinitely many segments; here a segment means, by definition, a (connected)
portion of a Stokes curve whose endpoint is a turning point or a crossing point of Stokes curves
(or possibly a point at infinity). Note that on each Stokes curve of type (j, k) there is only
one (ordinary or virtual) turning point of the same type and, except for turning points, three
Stokes curves meet at every crossing point of Stokes curves. We then determine whether each
segment of a Stokes curve is solid (i.e. a Stokes phenomenon occurs on the segment) or broken
(i.e. no Stokes phenomena occur on the segment) by applying the following three rules:
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A segment with an ordinary turning point as endpoint should be solid. (2.19a)

A segment with a virtual turning point as endpoint should be broken. (2.19b)

At a crossing point t0 of three new or ordinary Stokes curves #1,
#2 and #3, respectively of type (j > k), (k > l) and (j > l), the
following should hold for the six segments #±

m of #m (m = 1, 2, 3)
having t0 as common endpoint:

(i) for m = 1, 2 (i.e. for Stokes curves of ‘adjacent type’) both
#+
m and #−

m are solid, or both are broken,
(ii) if the four segments #±

m (m = 1, 2) are all solid, at most one of
#±

3 is broken (i.e. both of #±
3 are solid, or one is solid and the other

is broken). Otherwise, both of #±
3 are solid, or both are broken. (2.19c)

In the case of equation (2.1), starting from segments neighbouring ordinary or virtual turning
points, we can determine the attribute of being ‘solid or broken’ for all the segments of Stokes
curves by applying these rules and, after erasing irrelevant segments from the figure, we obtain
figure 1 where all crossing points of Stokes curves are non-ordered. In ending this Remark, we
note the following: taking account of the Riemann sheet structure of singular points of Borel
transformed WKB solutions, we find that the three rules listed above are natural requirements
or ansatz to be expected, provided that no pair of two (ordinary or virtual) turning points of
the same type are connected by a Stokes curve (cf [AKT1]).

Since we deal with the connection problem along the real axis, the two new Stokes curves
appearing in figure 1 are irrelevant to our problem. (They are broken curves near the real axis.)
It suffices to discuss the connection formula on ordinary Stokes curves emanating from turning
points. As is shown in the appendix, at each turning point tjk equation (2.1) can be reduced to
a Landau–Zener model for two levels

i
d

dz

(
ϕ1

ϕ2

)
= η

[(−z 0
0 z

)
+

∞∑
m=0

η−(m+1)/2

(
0 µm/2
νm/2 0

)](
ϕ1

ϕ2

)
(2.20)

with two ‘invariants’ µ = µ0 + η−1/2µ1/2 + · · · and ν = ν0 + η−1/2ν1/2 + · · ·. Furthermore,
on a Stokes curve {z ∈ C; arg z = π/4}, for example, of (2.20) (to be more precise, when one
crosses {arg z = π/4} anticlockwise), we have the connection formula

ϕ(+) �−→ ϕ(+), ϕ(−) �−→ ϕ(−) − 2iµν/2ηiµν/2µ

√
π

#(iµν/2 + 1)
eπ(i+µν)/4ϕ(+) (2.21)

for the following fundamental system of solutions of (2.20):

ϕ(+) = η−1/2

{(
1

−η−1/2ν0

2z

)
+ · · ·

}
eiηz2/2ziµ0ν0/2(1 + · · ·),

ϕ(−) = η−1/2

{(
η−1/2µ0

2z
1

)
+ · · ·

}
e−iηz2/2z−iµ0ν0/2(1 + · · ·).

(2.22)

(See [T1] or [T2].) We can thus expect that the same connection formula with (2.21) also
holds for equation (2.1) on a Stokes curve emanating as a turning point when we adopt
solutions which correspond to (2.22) through the reduction (part of) a fundamental system
of solutions.

For example, let us consider the turning point t12. The explicit scheme for constructing
the reduction to (2.20) near t12 described in the appendix tells us that (the top order part of)
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the invariants µ and ν at t12 are respectively given by

µ0 =
√

2

b2 − b1
c12, ν0 =

√
2

b2 − b1
c12 (2.23)

(cf (A.54) in the appendix). In particular,

iµ0ν0

2
= i|c12|2
b2 − b1

(2.24)

coincides with the Landau–Zener parameter κ12. Further, if we introduce local WKB solutions
ψ
(1)
0 and ψ(2)0 near t = t12 by

ψ
(1)
0 = η−1/2 exp

(
η

i

∫ t

t12

ρ1(t) dt

)(√
b2 − b1

2
(t − t12)

)κ12

×
(

ρ3 − ρ1

(ρ3 − ρ1)(t12)

)κ13

(e(1) + O(η−1/2)),

ψ
(2)
0 = η−1/2 exp

(
η

i

∫ t

t12

ρ2(t) dt

)(√
b2 − b1

2
(t − t12)

)−κ12

×
(

ρ3 − ρ2

(ρ3 − ρ2)(t12)

)κ23

(e(2) + O(η−1/2))

(2.25)

(where e(j) is a unit vector satisfying (2.5)), we find that ψ(j)0 (j = 1, 2) corresponds to ϕ(±)

through the reduction to (2.20) near t12 (cf (A.62) in the appendix). Hence it can be expected
that the same connection formula with (2.21) holds for ψ(j)0 (j = 1, 2) on a Stokes curve
emanating from t12. As ψ(j)0 and ψ(j) are related by

ψ
(1)
0 = (2(b2 − b1))

−κ12/2

(
b3 − b2

b2 − b1
a

)−κ13

eiη(a/(b2−b1))
2(b2−b1/2)(1 + O(η−1/2))ψ(1),

ψ
(2)
0 = e−iπκ12(2(b2 − b1))

κ12/2

(
b3 − b2

b2 − b1
a

)−κ23

eiη(a/(b2−b1))
2(b2/2)(1 + O(η−1/2))ψ(2),

(2.26)

we conclude that ψ(j) (j = 1, 2) should satisfy the following connection formula when they
are analytically continued from the left to the right across the two Stokes curves emanating
from t12 in the upper half-plane:

ψ(1) �−→ (1 + α−
12α

+
12)ψ

(1) − α−
12ψ

(2), ψ(2) �−→ ψ(2) − α+
12ψ

(1), (2.27)

where

α±
12 = c±12

i
√

2π

#(1 ± κ12)
(e±iπ/2(b2 − b1))

−1/2(2η)±κ12 e(1/2∓1)iπκ12β±1
12 ,

β12 = eiπκ12(2(b2 − b1))
−κ12

(
b3 − b2

b2 − b1
a

)κ23−κ13

eiηa2/(2(b2−b1)),

c+
12 = c12, c−12 = c12.

(2.28)

(In (2.28) we have omitted the symbol (1 + O(η−1/2)) for the sake of simplicity. We use the
same abbreviation in what follows if there is no fear of confusion.) In other words, if we let
M12 denote ( 1 + α−

12α
+
12 −α+

12 0
−α−

12 1 0
0 0 1

)
, (2.29)
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ψ(j)’s enjoy the following connection formula when they are analytically continued from the
left to the right near t12:

(ψ(1), ψ(2), ψ(3)) �−→ (ψ(1), ψ(2), ψ(3))M12. (2.30)

In a similar manner, we can show that the invariants at t23 = 0 satisfy

µ0 =
√

2

b3 − b2
c23, ν0 =

√
2

b3 − b2
c23,

iµ0ν0

2
= i|c23|2
b3 − b2

= κ23, (2.31)

and the following connection formula holds when ψ(j) (j = 2, 3) are analytically continued
from the left to the right across the two Stokes curves emanating from t23 = 0 in the upper
half-plane:

ψ(2) �−→ (1 + α−
23α

+
23)ψ

(2) − α−
23ψ

(3), ψ(3) �−→ ψ(3) − α+
23ψ

(2), (2.32)

where

α±
23 = c±23

i
√

2π

#(1 ± κ23)
(e±iπ/2(b3 − b2))

−1/2(2η)±κ23 e(1/2∓1)iπκ23β±1
23 ,

β23 = eiπκ23(2(b3 − b2))
−κ23aκ12−κ13 ,

c+
23 = c23, c−23 = c23.

(2.33)

That is,

(ψ(1), ψ(2), ψ(3)) �−→ (ψ(1), ψ(2), ψ(3))M23, (2.34)

where

M23 =
( 1 0 0

0 1 + α−
23α

+
23 −α+

23
0 −α−

23 1

)
. (2.35)

Furthermore, at t13 we have

µ0 =
√

2

b3 − b1
c13, ν0 =

√
2

b3 − b1
c13,

iµ0ν0

2
= i|c13|2
b3 − b1

= κ13, (2.36)

and

ψ(1) �−→ (1 + α−
13α

+
13)ψ

(1) − α−
13ψ

(3), ψ(3) �−→ ψ(3) − α+
13ψ

(1), (2.37)

where

α±
13 = c±13

i
√

2π

#(1 ± κ13)
(e±iπ/2(b3 − b1))

−1/2(2η)±κ13 e(1/2∓1)iπκ13β±1
13 ,

β13 = eiπ(−κ12+κ23+κ13)(2(b3 − b1))
−κ13

(
b3 − b2

b3 − b1
a

)−κ12−κ23

eiηa2/(2(b3−b1)),

c+
13 = c13, c−13 = c13.

(2.38)

That is,

(ψ(1), ψ(2), ψ(3)) �−→ (ψ(1), ψ(2), ψ(3))M13, (2.39)

where

M13 =
( 1 + α−

13α
+
13 0 −α+

13
0 1 0

−α−
13 0 1

)
. (2.40)
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The connection matrix S̃ for the WKB solutionψ(j) from t = −∞ to +∞ is then computed
as the product M12M13M23. The result is as follows:

( e2iπ(κ12+κ13) α−
23α

+
13e2iπκ12 − α+

12e2iπκ23 −α+
13e2iπκ12 + α+

12α
+
23

−α−
12e2iπκ13 −α−

12α
−
23α

+
13 + e2iπκ23 α−

12α
+
13 − α+

23
−α−

13 −α−
23 1

)
. (2.41)

Finally, it follows from (2.13) and (2.41) that (the top order part of) the S-matrix for
equation (2.1) becomes


 eiπ(κ12+κ13) α−

23α
+
13eiπ(2κ12−κ23) − α+

12eiπκ23 −α+
13e2iπκ12 + α+

12α
+
23

−α−
12eiπκ13 −α−

12α
−
23α

+
13eiπ(κ12−κ23) + eiπ(κ12+κ23) (α−

12α
+
13 − α+

23)e
iπκ12

−α−
13eiπ(−κ12+κ23) −α−

23eiπκ13 eiπ(κ23+κ13)


 . (2.42)

Thus we have been able to compute the S-matrix for the Landau–Zener model (2.1) for
three levels by using the exact WKB analysis. It is based on the reduction to a Landau–Zener
model for two levels at a turning point, i.e. a crossing point of energy levels. The Landau–
Zener parameters appear in the computation as (the top order part of) the invariants at turning
points.

3. A recipe for finding a complete Stokes geometry

As Berk–Nevins–Roberts [BNR] first discovered, the addition of a new Stokes curve is
necessary for obtaining a correct and consistent connection formula for WKB solutions
near an ordered crossing point of Stokes curves. (For the reference of the reader, let us
note that a crossing point of two Stokes curves respectively of type (j > k) and of type
(l > m) (j, k, l, m ∈ {1, 2, 3}) is said to be ordered if k = l or j = m. If a crossing
point is not ordered, we say it is unordered, or non-ordered.) Later [AKT1] detected a
point from which a new Stokes curve emanates, by studying the singularity structure of
Borel transforms of WKB solutions. The point is called ‘a new turning point’ in [AKT1],
but we now coin the name ‘a virtual turning point’. (The background of this naming is
that such a point is intrinsically determined by the operator, independent of arg η on which
a new Stokes curve depends, and that the new Stokes curve is irrelevant to the Stokes
phenomena of WKB solutions in a neighbourhood of the virtual turning point. Actually
a new Stokes curve is designated by a broken line near a virtual turning point, indicating
that no Stokes phenomenon is observed there, as discussed in section 2 (cf [AKT1]).)
The argument in [AKT1] is based on a mathematical result for a linear partial differential
operator with simple characteristics, which appears as the Borel transform of the ordinary
differential operator in question. In contrast to the operators discussed in [AKT1] operators
discussed in this paper are with double turning points as a consequence of (1.5), and
hence their Borel transforms are not with simple characteristics but rather with multiple
characteristics. Singularities of solutions of such operators propagate along the so-called
bicharacteristic chain, that is, they bifurcate along two mutually tangent bicharacteristic curves
at a point where the simple characteristic condition is violated, that is, at a double turning
point [KKO, P, T2].

An explicit and analytic form of a bicharacteristic chain b(κ, T ;α, c) is given by (3.1),
where κ is a multi-index (k1, k2, . . . , kn) with kl ∈ {1, 2, 3} (l = 1, 2, . . . , n) such that
kl �= kl+1 (l = 1, 2, . . . , n − 1), T = (t (1), . . . , t (n−1)) is a set of turning points such that
ρkl (t

(l)) = ρkl+1(t
(l)) (l = 1, 2, . . . , n− 1), and α and c are some constants.
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Figure 2. An example of a bicharacteristic chain.

b(κ, T ;α, c) =
{
(y, t) ∈ C

2; y = i
∫ t

α

ρk1 dt + c

}

∪
{
(y, t) ∈ C

2; y = i
∫ t

t (1)
ρk2 dt + i

∫ t (1)

α

ρk1 dt + c

}

∪ · · · ∪
{
(y, t) ∈ C

2; y = i
∫ t

t (n−1)
ρkndt + i

n−2∑
l=1

∫ t (l+1)

t (l)
ρkl+1 dt + i

∫ t (1)

α

ρk1 dt + c

}
.

(3.1)

Therefore, by replacing ‘a bicharacteristic curve’ with ‘a bicharacteristic chain’ in the
reasoning of [AKT1], we conclude that a virtual turning point for (1.1) is the t-component of
a self-intersection point of a bicharacteristic chain b(κ, T ;α, c) with α being a turning point
tjk1 , i.e. ρj (tjk1) = ρk1(tjk1) (j �= k1, kn). As it is clear that c is irrelevant to the value of
the t-component of a self-intersection point, we choose c to be 0 in what follows. If we let
k0 = kn+1 and t (0) respectively denote j and tjk , we find that the defining equation of a virtual
turning point is determined by a multi-index K = (k0, k1, . . . , kn) that satisfies kl �= kl+1 for
l = 0, 1, . . . , n (recall that kn+1 = k0 by the definition) and a K-dependent set T of turning
points; the concrete form of the equation is given by (3.3)K,T . Here and in what follows we
always assume condition (3.2) to avoid the degeneracy that a bicharacteristic chain contains a
closed loop:

for any point α such that ρk0(α) = ρkn(α),

−
∫ α

t(0)
ρk0 dt +

∫ α

t(n−1)
ρkndt +

n−1∑
l=1

∫ t (l)

t (l−1)
ρkldt �= 0. (3.2)

The equation ∫ t

t (0)
ρk0 dt =

∫ t

t (n−1)
ρkndt +

n−1∑
l=1

∫ t (l)

t (l−1)
ρkldt (3.3)K,T

enjoys the following important property:
Reflecting the double turning point character of equation (1.1), equation (3.3)K,T is quite

complicated in its appearance. However, since ρj (t) (j = 1, 2, 3) is a polynomial, (3.3)K,T is
an algebraic equation, and hence it admits only finitely many solutions. This presents a clear
contrast to the situation for operators with simple discriminants [AKT1], where the defining
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Figure 3. A bicharacteristic diagram with K = (1, 2, 3, 2, 1, 2).

equation of a virtual turning point is highly transcendental, and finding out its solutions is a
difficult job in spite of the fact that there seem to exist infinitely many solutions (cf [AKT1,
pp 82–3]).

Making use of this significant property of (3.3)K,T , we now present a recipe for adding
new Stokes curves to resolve ordered crossings. Here ‘to resolve ordered crossings’ means
‘to add an appropriate Stokes curve passing through an ordered crossing point so that a
consistent connection formula for WKB solutions may be found’ (cf [AKT1, pp 83–4]). To
describe the procedure concretely, let us introduce the following diagram which schematically
describes equation (3.3)K,T ; we call it a bicharacteristic diagram. The diagram is determined
by (K, T ), just as in the case of equation (3.3)K,T . Here K is a multi-index (k0, k1, . . . , kn)

with kl ∈ {1, 2, 3} (l = 0, 1, . . . , n) such that kl �= kl+1 (l = 0, 1, . . . , n− 1) and k0 �= kn, and
T is a set of turning points {t (0), t (1), . . . , t (n−1)} such that

ρkl (t
(l)) = ρkl+1(t

(l)) (l = 0, 1, . . . , n− 1).

To such data (K, T )we assign a diagramD(K, T ) in the following manner: diagramD(K, T )
consists of (n− 1) line segments labelled by kl (l = 1, . . . , n− 1), two half lines respectively
labelled by k0 and kn, and n points labelled by t (l) (l = 0, 1, . . . , n − 1), so that the line kl
and the line kl+1 are hinged by the point t (l) (l = 0, 1, . . . , n− 1). As a convention we let the
half lines cross, and line segments are located in a linear order. To maintain the flavour of a
bicharacteristic chain (cf figure 2), we draw line segments as curvilinear ones, but this is just
a matter of taste (see figure 3).

Remark 3.1. As a convention we consider D(K0, T0) with K0 = (k0, k1) and T0 = (t (0)) as
a bicharacteristic diagram, that is,

is, by definition, regarded as a bicharacteristic diagram. It is clear that equation (3.3)K0,T0

admits t = t (0) as a solution. Thus not only virtual but also ordinary turning points may be
conventionally designated by a bicharacteristic diagram.

For the practical application of bicharacteristic diagrams, the notions of their contractions
and junctions are important. The contraction of a bicharacteristic diagram is the following
procedure: if the points t (l) and t (l+1) are the same we replace the triplet of lines (kl, kl+1, kl+2)
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Figure 4. Contraction of the diagram in figure 3.

#

Figure 5. Junction of bicharacteristic diagrams.

by one line kl . Note that t (l) = t (l+1) entails kl = kl+2, as we are considering double turning
points for three levels. For example, if t (3) = t (4) in the diagram in figure 3, its contraction
becomes the diagram shown in figure 4. Note also that the contraction procedure is a counterpart
of the vanishing of the integral∫ t (l+1)

t (l)
ρkl+1 dt

in (3.3)K,T .
The junction of two bicharacteristic diagrams D(K, T ) and D(K ′, T ′) is defined if

K = (k0, . . . , kn) and K ′ = (k′
0, . . . , k

′
m) satisfy the following condition:

{k0, kn, k
′
0, k

′
m} coincides with {1, 2, 3} as sets. (3.4)

Note that k0 �= kn and k′
0 �= k′

m by the assumption. Hence it suffices to define the ‘junction’
D(K, T )#D(K ′, T ′) of D(K, T ) and D(K ′, T ′) when

k0 = 1, kn = 3, k′
0 = 3 and k′

m = 2. (3.4′)

To define the junction let kn+l and t (n+l) respectively denote k′
l and t ′(l) for l = 0, 1, . . . , m− 1.

This re-numbering is well-defined by assumption (3.4′). The D(K, T )#D(K ′, T ′) is then
obtained by joining t (n−1) and t (n) by kn (= 3) (cf figure 5). Note that contraction may often
be applied to the resulting diagram. For example, if t (0) = t ′(0) in the example in figure 5, the
resulting diagram may be contracted to the following:

The importance of the notion ‘junction’ lies in the following fact:
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Suppose two (ordinary or new) Stokes curves σ1 and σ2 cross at a point a.
Suppose further that σj (j = 1, 2) emanates from a (virtual or ordinary)
turning point designated by the bicharacteristic diagram D(Kj , Tj ) (j = 1,
2, respectively). As condition (3.4) is satisfied in this case, we may
assume (3.4′). If we consider the union σ of Stokes curves of type
(1, 2) that emanate from solutions of (3.3)K,T that corresponds to the
bicharacteristic diagram D(K, T ) = D(K1, T1)#D(K2, T2), then the
crossing point a is contained in σ . (3.5)

To validate the fact (3.5), we let Rj(t) denote
∫ t

0 ρjdt (j = 1, 2, 3). (The lower endpoint 0 is
chosen just for a uniform normalization.) By the assumptions, the Stokes curve σ1 is given by

Im (i(R1(t)− R3(t))) = Im (i(R1(t∗)− R3(t∗))), (3.6)

where t∗ is a solution of (3.3)K1,T1
. As ρj (t) is a real polynomial by the assumption, (3.6) can

be rewritten as

Re (R1(t)− R3(t)) = Re (R1(t∗)− R3(t∗)). (3.7)

Similarly, σ2 is given by

Re (R3(t)− R2(t)) = Re (R3(t∗∗)− R2(t∗∗)), (3.8)

where t∗∗ is a solution of (3.3)K2,T2
. To write down the equations for t∗ and t∗∗, let K1 and K2

be given respectively by (k0 (= 1), k1, . . . , kn (= 3)) and (kn (= 3), kn+1, . . . , kn+m (= 2)),
and let T1 and T2 be given respectively by (t (0), . . . , t (n−1)) and (t (n), . . . , t (n+m−1)). Then we
find

R1(t∗)− R1(t
(0)) = R3(t∗)− R3(t

(n−1)) +
n−1∑
l=1

(
Rkl (t

(l))− Rkl (t
(l−1))

)
, (3.9)

R3(t∗∗)− R3(t
(n)) = R2(t∗∗)− R2(t

(n+m−1)) +
m−1∑
l=1

(
Rkl+n (t

(l+n))− Rkl+n (t
(l+n−1))

)
. (3.10)

On the other hand, σ is given by

Re (R1(t)− R2(t)) = Re (R1(t̃∗)− R2(t̃∗)), (3.11)

where t̃∗ satisfies

R1(t̃∗)− R1(t
(0))

= R2(t̃∗)− R2(t
(n+m−1)) +

n−1∑
l=1

(
Rkl (t

(l))− Rkl (t
(l−1))

)

+R3(t
(n))− R3(t

(n−1)) +
m−1∑
l=1

(
Rkl+n (t

(l+n))− Rkl+n (t
(l+n−1))

)
. (3.12)

Since a lies both on σ1 and on σ2, we find from (3.7) and (3.8)

Re (R1(a)− R2(a)) = Re (R1(t∗)− R3(t∗) + R3(t∗∗)− R2(t∗∗)). (3.13)

Furthermore it follows from (3.9) and (3.10) that
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R1(t∗)− R3(t∗) + R3(t∗∗)− R2(t∗∗)

= R1(t
(0))− R3(t

(n−1)) +
n−1∑
l=1

(
Rkl (t

(l))− Rkl (t
(l−1))

)

+R3(t
(n))− R2(t

(n+m−1)) +
m−1∑
l=1

(
Rkl+n (t

(l+n))− Rkl+n (t
(l+n−1))

)
. (3.14)

It then follows from (3.12) that this coincides with (R1(t̃∗)− R2(t̃∗)). Therefore a lies on the
Stokes curve σ , i.e.

Re (R1(a)− R2(a)) = Re (R1(t̃∗)− R2(t̃∗)). (3.15)

This confirms the fact (3.5).

Remark 3.2. It is worth mentioning that the crossing point a in (3.5) may be either ordered
or non-ordered, although we use the fact (3.5) to resolve an ordered crossing.

Let us now show how to use the fact (3.5) in obtaining a complete Stokes geometry, i.e.
a Stokes geometry without ordered crossing points. We discuss example 3.1 in a somewhat
detailed manner; it gives us several interesting lessons. Some other examples are included at
the end of this section without any discussions.

Example 3.1. Let ρ1 = 1, ρ2 = t/2 and ρ3 = t2. Then the configuration of ordinary Stokes
curves is given by figure 6. Because of the reality of ρj the geometry is symmetric with respect
to the real axis. Hence we mainly study the geometry in the first and the second quadrants.

Figure 6. Ordinary Stokes curves of example 3.1.
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Figure 7. New Stokes curve resolving the ordered crossing points A and A′.

There is one ordered crossing pointA in the second quadrant. Together with its mirror imageA′

in the third quadrant, this ordered crossing should be resolved by a new Stokes curve emanating
from a virtual turning point satisfying (3.3)K,T with

#

(3.16)

The explicit form of (3.3)K,T is as follows in this case:

t + 1 = t2

4
+

1

3
. (3.17)

We then find a new Stokes curve of type (1, 2) emanating from t = 2−
√

20/3 resolves ordered

crossing points A and A′ simultaneously. (See figure 7 where, and in subsequent figures 8
and 10 also, a virtual turning point is designated by a small rectangle as in figure 1.)

Let us now examine the configuration of (ordinary) Stokes curves in the region

{t ∈ C; 0 < Re t < 1, Im t > 0}.
In this region we observe three ordered crossing points, labelled respectively by B,E and F in
figure 6. We first concentrate our attention on the point B; points E and F shall be discussed
after we finish the study of the effect of resolving the ordered crossing point B. The point
B is a crossing point of a Stokes curve emanating from t = 1/2 and that emanating from
t = 1. Hence it should be resolved, again together with its mirror image B ′, by a new Stokes
curve emanating from a virtual turning point determined by (3.3)K,T , whereD(K, T ) is given
by (3.18):

#

(3.18)

(Here and in what follows, a circled integer like 1© indicates a turning point, not an index.)
The explicit form of (3.3)K,T in this case is as follows:

t2

4
− 1

16
= t − 1 +

1

3
− 1

24
. (3.19)
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Figure 8. New Stokes curve resolving the ordered crossing point B.

We then see that a new Stokes curve of type (1, 2) passing through the virtual turning point

t = 2 −
√

17/12 resolves the ordered crossings simultaneously (cf figure 8).

Let us now trace this new Stokes curve in {t ∈ C; Im t > 0}. There it is of type (2 > 1)
and its concrete form is shown in figure 8. Then the new Stokes curve in question crosses at
C another (ordinary) Stokes curve of type (3 > 2), which might appear to be a newly created
ordered crossing point. The candidate for resolving this possible ordered crossing point is
given by (3.3)K,T with D(K, T ) being given by (3.20):

#

(3.20)

which is contracted to (3.21):

(3.21)

Thus the ‘new Stokes curve’ to be added to resolve the ‘ordered crossing point’C is actually an
ordinary Stokes curve. As a matter of fact one can readily confirm analytically (i.e. without the
aid of a computer) that the point C is a non-ordered crossing point of ordinary Stokes curves
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respectively of type (3 > 1) and of type (3 > 2). Otherwise stated, three Stokes curves meet
at the point C. As rule (2.19c) in section 2 tells us, the (new) Stokes curve of type (2 > 1),
i.e. of ‘adjacent type’ thus remains a solid line after passing through the crossing point C, and
it further crosses another ordinary Stokes curve of type (3 > 2) emanating from t = 0. The
crossing point D is ordered, and a new Stokes curve that resolves this ordered crossing point
emanates from a virtual turning point defined by (3.3)K,T withD(K, T ) being given by (3.22):

#

(3.22)

Hence the explicit form of (3.3)K,T reads as follows:

t3

3
= t − 1 +

1

16
+

1

3
− 1

24
. (3.23)

As shown in figure 9, we can then confirm that a new Stokes curve emanating from
t = 1 − ε (ε > 0) that satisfies (3.23) passes through the point D, resolving the ordered
crossing point.

Although this new Stokes curve of type (3 > 1) does not cross any more Stokes curves,
the new Stokes curve of type (2 > 1) further cross (in the second quadrant) another Stokes
curve of type (3 > 1) that emanates from t = −1. But, the crossing point is non-ordered.
Thus, as far as these new Stokes curves are concerned, no problems remain.

Now let us return to the study of points E and F . The ordered crossing point E is an
intersection point of the Stokes curve emanating from 0 with type (3 > 2) and that emanating
from 2 with type (2 > 1); hence it should be resolved by a new Stokes curve emanating from
a virtual turning point defined by (3.3)K,T with D(K, T ) being given by (3.24):

#

(3.24)

The concrete form of the equation is:

t3

3
= t − 2 + 1. (3.25)

We can easily check that this equation has one solution t∗ in the first quadrant (near
1.1 + 0.7

√−1), and the Stokes curve of type (3 > 1) that emanates from t∗ passes through the
point E, resolving the ordered crossing. A similar discussion shows that we are to seek for a
solution t∗∗ of the equation

t3

3
− 1

24
= t − 2 + 1 − 1

16
, (3.26)

which is read off from the following diagram (3.27):

#

(3.27)
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Figure 9. New Stokes curve resolving the ordered crossing point D.

Extending this new Stokes curve beyond t∗∗, we are naturally led to the study of the
configuration of ordinary Stokes curves in the region {t ∈ C; Re t > 1, Im t > 0}. As we
see in figure 6 there exist two ordered crossing points G and H in the region. Interestingly
enough, the defining equation for a virtual turning point needed to resolve G is the same
as (3.26), because the associated bicharacteristic diagram is the same as DF . It may be worth
noting that the new Stokes curve in question also passes through the non-ordered crossing
point a (see figure 10). Note that this new Stokes curve changes its type at t∗∗; thus both F
and G are simultaneously resolved by one new Stokes curve.

Finally let us study the ordered crossing point H in figure 6. Since it is a crossing point
of the Stokes curve emanating from 1 with type (1 > 3) and that emanating from 2 with type
(2 > 1), the associated bicharacteristic diagram is given by (3.28):

#

(3.28)

Hence the defining equation of the required virtual turning point is

t3

3
− 1

3
= t2

4
− 1 + (2 − 1). (3.29)
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Figure 10. New Stokes curve resolving two ordered crossing points F and G simultaneously.

As this equation has one real solution t0 (� 1.3), a new Stokes curve emanating from t0
resolves H , together with its mirror image H ′ simultaneously. Extending this new Stokes
curve beyondH , we find that it intersects with an ordinary Stokes curve emanating from 2 and
that emanating from 1. Fortunately these three Stokes curves meet at one and the same point
b (cf figure 11). This fact can be immediately understood if we use bicharacteristic diagrams;
for example, the potential ordered crossing point, say δ, of the Stokes curve of type (1 > 2)
and the new Stokes curve emanating from t0 with type (2 > 3) should be resolved by a new
Stokes curve that emanates from a virtual turning point whose defining equation is (3.3)K,T
with D(K, T ) being given by (3.30):

#

(3.30)

This indicates that the new Stokes curve is actually an ordinary Stokes curve emanating from 1,
and it is readily confirmed analytically. Therefore δ coincides with b, the non-ordered crossing
point of an ordinary Stokes curve of type (1 > 2) and that of type (1 > 3).

Thus we have resolved all the ordered crossing points of ordinary Stokes curves together
with all the newly created ones by the addition of new Stokes curves. The resulting Stokes
geometry is given by figure 12.
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Figure 11. Three Stokes curves meeting at the point b.

Figure 12. Complete Stokes geometry of example 3.1.

For the reader’s reference, we present two examples of completed Stokes geometry. We
omit the explanations of how to obtain them. They are actually simpler to analyse than
example 3.1, as points like D, i.e. newly created ordered crossing points do not appear in
examples 3.2 and 3.3.

Example 3.2. ρ1 = 0, ρ2 = t and ρ3 = t2 − 2. The complete Stokes geometry is given by
figure 13.

Example 3.3. ρ1 = 1 − 5t2 + t4, ρ2 = − 3
2 t

2 and ρ3 = −2. The complete Stokes geometry is
given by figure 14.
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Figure 13. Complete Stokes geometry of example 3.2.

4. Computation of the transition probabilities: general case

In this section we present a general recipe for computing the transition probabilities from
t = −∞ to +∞ of solutions of (1.1). An important observation for obtaining such a general
result is that, thanks to the reality assumption (1.5), a new Stokes curve emanating from a
non-real virtual turning point never crosses the real axis. To confirm this, let us consider a
non-real virtual turning point t∗ determined by (3.3)K,T with appropriate K and T . That is, t∗
is a solution of∫ t∗

0
(ρk0 − ρkn)dt =

∫ t (0)

0
ρk0 dt −

∫ t (n−1)

0
ρkndt +

n−1∑
l=1

∫ t (l)

t (l−1)
ρkldt. (4.1)

Since (1.5) entails the right-hand side of (4.1) being real, the mirror image t∗ of t∗ (with respect
to the real axis) is also a virtual turning point. (In fact, t∗ also satisfies (4.1).) Furthermore the
same reasoning shows that the mirror image σ of the new Stokes curve σ emanating from t∗
is a new Stokes curve emanating from t∗. If σ meets with the real axis and if the union σ ∪ σ
is non-singular as t ranges from t∗ to t∗ along it, we find



2422 T Aoki et al

Figure 14. Complete Stokes geometry of example 3.3.

Im
∫ t

t∗
(ρk0 − ρkn) dt is monotonically increasing or decreasing. (4.2)

But, as both t∗ and t∗ are solutions of the same equation (4.1) and hence
∫ t∗
t∗
(ρk0 − ρkn) dt = 0

holds, this means t∗ = t∗, contradicting the assumption that t∗ is non-real. Hence there exists
a singular point, say α, of the curve σ ∪ σ . By virtue of the Cauchy–Riemann equation for the
integral

∫ t
t∗
(ρk0 − ρkn) dt , we find

ρk0(α) = ρkn(α). (4.3)

Therefore α is a turning point. Hence it lies on the real axis by assumption (1.5). In particular,∫ α
t∗
(ρk0 − ρkn) dt is real, while it is purely imaginary as α is on the new Stokes curve σ ∪ σ .

Hence the integral
∫ α
t∗
(ρk0 − ρkn) dt must be zero and, by the same reasoning as earlier, α

should coincide with t∗, again leading to a contradiction. Thus we have confirmed that a new
Stokes curve emanating from a non-real virtual turning point never meets with the real axis.

On the other hand, a new Stokes curve emanating from a virtual turning point on the real
axis is a broken line near the real axis, that is, it is irrelevant to the Stokes phenomena of
WKB solutions. To be very strict, we have to pay some special attention to the case where a
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virtual turning point and an ordinary turning point happen to coincide. This degenerate case
is, however, eliminated by assumption (3.2). Thus it suffices to take into account the effect
of ordinary Stokes curves in a complete Stokes geometry (i.e. a collection of Stokes curves
whose crossing points are all non-ordered), as far as we are concerned with the connection
problems near the real axis.

Hence we can compute the transition probabilities for a general three level problem (1.1)
in the following manner: first, as a fundamental system of solutions, we consider the following
WKB solutions ψ(j) (j = 1, 2, 3):

ψ(j) = η−1/2 exp

(
η

i

∫ t

t0

ρj (t)dt +
1

i

∫ t

t0

( |cjk|2
ρj − ρk

+
|cjl|2
ρj − ρl

)
dt

)
(e(j) + O(η−1/2)), (4.4)

where t0 is a base point which is arbitrarily fixed (as far as it does not coincide with a turning
point), e(j) is a unit vector satisfying (2.5), and {j, k, l} is a permutation of {1, 2, 3}. We
choose normalization constants N±,(j) so that ψ±,(j) = N±,(j)ψ(j) may satisfy (2.12). Note
that, in view of the asymptotic behaviour of WKB solutions near t = ±∞, we can choose
N±,(j) = 1 except when ρj − ρk is a polynomial of degree one for some k. Next, we list up
all the (real) turning points {tjk} and arrange them in an increasing order like {t [n]

jk }n=1,...,N ,
that is, we number {tjk} by counting them from the left (i.e. from t = −∞). Then, our WKB
solutions ψ(j) (j = 1, 2, 3) should satisfy the following connection formula when they are
analytically continued from the left to the right across the two Stokes curves emanating from
t

[n]
jk in the upper half-plane:

ψ(j) �−→ (1 + α[n],−
jk α

[n],+
jk )ψ(j) − α

[n],−
jk ψ(k), ψ(k) �−→ ψ(k) − α

[n],+
jk ψ(j). (4.5)

Here we are assuming that

λ
[n]
jk

def= d

dt
(ρk − ρj )

∣∣∣
t=t [n]

jk

> 0 (4.6)

holds (by exchanging the indices j and k we may assume (4.6) without loss of generality) and
(the top order part of) α[n],±

jk is given as follows:

α
[n],±
jk = c±jk

i
√

2π

#(1 ± κ
[n]
jk )

(e±iπ/2λ
[n]
jk )

−1/2(2η)±κ
[n]
jk e(1/2∓1)iπκ [n]

jk (β
[n]
jk )

±1, (4.7)

where

c+
jk = cjk, c−jk = cjk, κ

[n]
jk = i|cjk|2

λ
[n]
jk

, (4.8)

and β [n]
jk can be computed by comparing the WKB solutions (4.4) with the following:

ψ
(j)

0 = η−1/2 exp

(
η

i

∫ t

t
[n]
jk

ρj (t) dt +
1

i

∫ t

t
[n]
jk

(
|cjk|2

(
1

ρj − ρk
+

1

λ
[n]
jk (t − t

[n]
jk )

)

+
|cjl|2
ρj − ρl

)
dt

)(
λ

[n]
jk (t − t

[n]
jk )

2

2

)κ [n]
jk /2

(e(j) + O(η−1/2)),

ψ
(k)
0 = η−1/2 exp

(
η

i

∫ t

t
[n]
jk

ρk(t) dt +
1

i

∫ t

t
[n]
jk

(
− |cjk|2

(
1

ρj − ρk
+

1

λ
[n]
jk (t − t

[n]
jk )

)

+
|ckl|2
ρk − ρl

)
dt

)(
λ

[n]
jk (t − t

[n]
jk )

2

2

)−κ [n]
jk /2

(e(k) + O(η−1/2)),

(4.9)
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that is, β [n]
jk is determined by

β
[n]
jk = γ

[n]
j

γ
[n]
k

(4.10)

where

ψ
(j)

0 = γ
[n]
j ψ(j), ψ

(k)
0 = γ

[n]
k ψ(k). (4.11)

Note that the WKB solutions (4.9) correspond to the solutions (2.22) of the Landau–Zener
model (2.20) for two levels through the reduction to (2.20) near t [n]

jk . As is done in section 2,
the connection formula (4.5) can also be expressed with some 3×3 matrixM [n] in the following
manner:

(ψ(1), ψ(2), ψ(3)) �−→ (ψ(1), ψ(2), ψ(3))M [n]. (4.12)

Since a Stokes curve emanating from an ordinary turning point never meets again with the real
axis (which can be verified by the same reasoning as that used to confirm that a new Stokes
curve emanating from a non-real virtual turning point does not cross the real axis), we thus
conclude that(
N+,(1) 0 0

0 N+,(2) 0
0 0 N+,(3)

)−1

M [N ] · · ·M [1]

(
N−,(1) 0 0

0 N−,(2) 0
0 0 N−,(3)

)
(4.13)

describes the S-matrix for equation (1.1).

Appendix. Reduction to a Landau–Zener model for two levels at a turning point

In this appendix we construct a formal reduction of our three level problem (1.1) with the
Hamiltonian given by (1.2) to a Landau–Zener model for two levels at a turning point.
Similar reductions have already been discussed for systems of the form (1.1) with H(t, η) =
H0(t) + η−1H1(t) + η−2H2(t) + · · ·, that is, when H(t, η) is a formal power series in η−1 with
holomorphic coefficients, at a simple turning point in [W] and at a double turning point in [T2].
The argument employed in this appendix is a slight modification of that used in [T2].

Before discussing the reduction at a turning point, we first review briefly the construction
of WKB solutions of (1.1) as a preliminary. To construct WKB solutions, we use the following
formal diagonalization of (1.1) (cf [W, T2]): since the top order part of (1.1) (with respect to
η) is already diagonal by assumption (1.3), we start with the diagonalization of the order 1/2
part. For this purpose we consider a change of unknown functions of the form

ψ = (1 + η−1/2P1/2(t))ϕ. (A.1)

Then ϕ should satisfy

i
d

dt
ϕ = η

(
(1 + η−1/2P1/2)

−1(H0 + η−1/2H1/2)(1 + η−1/2P1/2)

− iη−3/2(1 + η−1/2P1/2)
−1 dP1/2

dt

)
ϕ

= η(H0 + η−1/2(H1/2 + [H0, P1/2]) + · · ·)ϕ, (A.2)

where [, ] denotes the commutator of two matrices. Hence, if we define each off-diagonal
entry (P1/2)jk (j �= k) of P1/2(t) by

(P1/2)jk = − cjk

ρj (t)− ρk(t)
(A.3)
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(here we are assuming cjk = ckj for j > k), the order 1/2 part of (A.2) vanishes as all the
diagonal components ofH1/2(t) are zero by assumption (1.4). This procedure can be continued
up to arbitrarily higher orders, that is, for an arbitrary integer n we can diagonalize (1.1) up
to order n/2 by introducing a change of unknown functions ψ = (1 + η−n/2Pn/2(t))ϕ in a
recursive way. Hence we find a formal transformation

ψ = R(t, η)ϕ, R(t, η) = 1 + η−1/2R1/2(t) + · · · = (1 + η−1/2P1/2)(1 + η−1P1) · · · (A.4)

which transforms equation (1.1) into

i
d

dt
ϕ = η[H0(t) + η−1H̃1(t) + η−3/2H̃3/2(t) + · · ·]ϕ (A.5)

where every matrix H̃n/2(t) is diagonal. Since the diagonalized system (A.5) can be readily
solved, we thus obtain a formal solution of (1.1) of the form

ψ(j) = exp

(
η

i

∫ t

ρj (t) dt

) ∞∑
m=0

ψ
(j)

m/2(t)η
−(m+1)/2 (A.6)

(where each ψ(j)m/2(t) is an n-vector) by substituting a solution of (A.5) whose kth components
are all zero except for k = j into the right-hand side of transformation (A.4).

For example, in the case of equation (2.1), i.e. a generalization of the Landau–Zener
model to three levels, the first few terms of transformation (A.4) and those of the diagonalized
system (A.5) are given as follows:

R1/2 =




0 c12
ρ2−ρ1

c13
ρ3−ρ1

c12
ρ1−ρ2

0 c23
ρ3−ρ2

c13
ρ1−ρ3

c23
ρ2−ρ3

0


 , (A.7)

R1 =




0 c23c13
(ρ2−ρ1)(ρ2−ρ3)

c12c23
(ρ3−ρ1)(ρ3−ρ2)

c23c13
(ρ1−ρ2)(ρ1−ρ3)

0 c12c13
(ρ3−ρ1)(ρ3−ρ2)

c12 c23
(ρ1−ρ2)(ρ1−ρ3)

c12c13
(ρ2−ρ1)(ρ2−ρ3)

0


 , (A.8)

H0 =
(
ρ1 0 0
0 ρ2 0
0 0 ρ3

)
, (A.9)

H̃1 =




|c12|2
ρ1−ρ2

+ |c13|2
ρ1−ρ3

0 0

0 |c12|2
ρ2−ρ1

+ |c23|2
ρ2−ρ3

0

0 0 |c13|2
ρ3−ρ1

+ |c23|2
ρ3−ρ2


 , (A.10)

H̃3/2 = (c12c23c13 + c12 c23c13)




1
(ρ1−ρ2)(ρ1−ρ3)

0 0

0 1
(ρ2−ρ1)(ρ2−ρ3)

0

0 0 1
(ρ3−ρ1)(ρ3−ρ2)


 , (A.11)

where ρ1(t) = b1t + a, ρ2(t) = b2t and ρ3(t) = b3t . Hence, letting e(j) denote a unit vector
satisfying e(j)k = δjk , we find that (2.1) has the following WKB solutions:

ψ(j) = η−1/2 exp

(
η

i

∫ t
(
ρj (t) + η−1

( |ckj |2
ρj − ρk

+
|clj |2
ρj − ρl

)
+ O(η−3/2)

)
dt

)
×(e(j) + O(η−1/2))

= η−1/2 exp

(
η

i

∫ t

ρj (t) dt

)
(ρk − ρj )

−κkj (ρl − ρj )
−κlj (e(j) + O(η−1/2)).

(A.12)
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Here καβ denotes a Landau–Zener parameter (2.6) and {j, k, l} is a permutation of {1, 2, 3}.
In order to seek for the explicit form of the connection formula for Borel sums of these

WKB solutions, we now discuss the reduction at a turning point. Since we assume that only
two of the ρj (t)’s merge at a turning point (cf (1.5)), we can decompose system (1.1) into the
direct sum of two smaller systems, one of which is of size 2 × 2 and the other of which is of
size 1 × 1, by the following transformation near the turning point in question:

ψ = S(t, η)ϕ, S(t, η) = 1 + η−1/2S1/2(t) + η−1S1(t) + · · · (A.13)

where each entry of Sj/2(t) is holomorphic near the turning point (‘block diagonalization’;
cf [W,T2]). Thus it suffices to consider the reduction of a 2×2 system. Furthermore, as every
turning point is a double turning point by virtue of (1.5), by employing a gauge transformation

ψ = exp

(
η

2i

∫ t

tjk

trace H0(t) dt

)
ϕ (A.14)

and a change of variables defined by

z
dz

dt
=
√
5(t), i.e. z =

(
2
∫ t

tjk

√
5(t) dt

)1/2

, (A.15)

where tjk is the turning point in question and5(t) denotes the discriminant of the characteristic
equation of H0(t), we can convert the top order part H0 into the following form:

H0 =
(−z 0

0 z

)
. (A.16)

Hence, in what follows, we discuss the reduction of the following 2 × 2 system to a Landau–
Zener model (2.20) for two levels at a turning point z = 0:

i
d

dz
ψ = η[H0(z) + η−1/2H1/2(z) + · · ·]ψ, (A.17)

where

H0(z) =
(−z 0

0 z

)
, H1/2(z) =

(
0 b1/2(z)

c1/2(z) 0

)
,

Hj/2(z) =
(
aj/2(z) bj/2(z)

cj/2(z) dj/2(z)

)
(j � 2).

(A.18)

First, we consider the following transformation

ψ = (P0 + η−1/2Q1/2)ϕ (A.19)

with

P0 =
(
p(z) 0

0 q(z)

)
(p(0)q(0) �= 0), Q1/2 =

(
0 r(z)

s(z) 0

)
. (A.20)

By (A.19) equation (A.17) is transformed into

i
d

dz
ϕ = η[H0(z) + η−1/2H̃1/2(z) + η−1H̃1(z) + · · ·]ϕ (A.21)

where

H̃1/2(z) =
(

0 q

p
b1/2 − 2 r

p
z

p

q
c1/2 + 2 s

q
z 0

)
(A.22)

and

H̃1(z) =
(
a1 + s

p
b1/2 − r

q
c1/2 − 2 rs

pq
z− ip

′
p

q

p
b1

p

q
c1 d1 − s

p
b1/2 + r

q
c1/2 + 2 rs

pq
z− i q

′
q

)
. (A.23)
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Hence, if we require
q

p
b1/2 − 2

r

p
z = b1/2(0), (A.24)

p

q
c1/2 + 2

s

q
z = c1/2(0), (A.25)

a1 +
s

p
b1/2 − r

q
c1/2 − 2

rs

pq
z− i

p′

p
= 0, (A.26)

d1 − s

p
b1/2 +

r

q
c1/2 + 2

rs

pq
z− i

q ′

q
= 0, (A.27)

we can let the off-diagonal entries of H̃1/2 be independent of z and let the diagonal components
of H̃1 vanish. The requirements (A.24), . . . , (A.27) are attained by defining p and q by

pq = exp

(
1

i

∫ z

0
(a1 + d1) dz

)
, (A.28)

b1/2c1/2 − b1/2(0)c1/2(0)− z

[
(a1 − d1)− i

d

dz

(
log

p

q

)]
= 0, (A.29)

p(0) = q(0) = 1 (A.30)

and choosing r and s so that they satisfy (A.24) and (A.25) respectively. (Note that the sum
of (A.26) and (A.27) is an immediate consequence of (A.28) and that their difference follows
from (A.24), (A.25) and (A.29).)

In a similar manner we inductively use the transformation

ψ = (1 + η−(n−1)/2P(n−1)/2 + η−n/2Qn/2)ϕ (A.31)

(n � 2) with

P(n−1)/2 =
(
p(n−1)/2(z) 0

0 q(n−1)/2(z)

)
, Qn/2 =

(
0 rn/2(z)

sn/2(z) 0

)
(A.32)

to make the off-diagonal entries of the order n/2 part be independent of z and the diagonal
components of the order (n + 1)/2 part vanish. As a matter of fact, under the induction
hypothesis that Hj/2(z) has already been converted to a canonical form (2.20) for j � n − 1
and the diagonal components of Hn/2(z) vanish, (A.31) transforms equation (A.17) into

i
d

dz
ϕ = η[H0 + · · · + η−(n−1)/2H(n−1)/2 + η−n/2H̃n/2 + η−(n+1)/2H̃(n+1)/2 + · · ·]ϕ, (A.33)

where the diagonal components of H̃n/2(z) are both equal to 0, its off-diagonal entries are
given by

bn/2 − (p(n−1)/2 − q(n−1)/2)µ1/2 − 2rn/2z, (A.34)

cn/2 + (p(n−1)/2 − q(n−1)/2)ν1/2 + 2sn/2z, (A.35)

and the diagonal components of H̃(n+1)/2 are of the following form:

a(n+1)/2 + sn/2µ1/2 − rn/2ν1/2 − ip′
(n−1)/2, (A.36)

d(n+1)/2 − sn/2µ1/2 + rn/2ν1/2 − iq ′
(n−1)/2. (A.37)

Hence, if we define p(n−1)/2 and q(n−1)/2 by

p(n−1)/2 + q(n−1)/2 = 1

i

∫ z

0
(a(n+1)/2 + d(n+1)/2) dz, (A.38)

(bn/2 − bn/2(0))ν1/2 + (cn/2 − cn/2(0))µ1/2

−z
[
(a(n+1)/2 − d(n+1)/2)− i

d

dz
(p(n−1)/2 − q(n−1)/2)

]
= 0, (A.39)

p(n−1)/2(0) = q(n−1)/2(0) = 0 (A.40)
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and determine rn/2 and sn/2 so that they satisfy

bn/2 − (p(n−1)/2 − q(n−1)/2)µ1/2 − 2rn/2z = bn/2(0), (A.41)

cn/2 + (p(n−1)/2 − q(n−1)/2)ν1/2 + 2sn/2z = cn/2(0), (A.42)

then equation (A.33) turns out to be of the desired form. We have thus constructed a
transformation

ψ = T (z, η)ϕ, (A.43)

where

T (z, η) = T0(z) + η−1/2T1/2(z) + η−1T1(z) + · · ·
= (P0 + η−1/2Q1/2)(1 + η−1/2P1/2 + η−1Q1) · · · , (A.44)

which reduces equation (A.17) to a Landau–Zener model (2.20) for two levels at a turning
point z = 0.

In the case of our Landau–Zener model (2.1) for three levels, the system can be block-
diagonalized near a turning point, say, t12 = a/(b2 − b1) by the following:

S1/2 =

 0 0 c13

ρ3−ρ1

0 0 c23
ρ3−ρ2

− c13
ρ3−ρ1

− c23
ρ3−ρ2

0


 , (A.45)

S1 =




0 0 c12c23
(ρ3−ρ1)(ρ3−ρ2)

0 0 c12c13
(ρ3−ρ1)(ρ3−ρ2)

− c12 c23
(ρ3−ρ1)(ρ3−ρ2)

− c12c13
(ρ3−ρ1)(ρ3−ρ2)

0


 . (A.46)

This block-diagonalizer together with a gauge transformation

ψ = exp

(
η

2i

∫ t

t12

(ρ1 + ρ2) dt

)
ϕ (A.47)

and a change of variables

z = z(t) =
√
b2 − b1

2
(t − t12) (A.48)

reduces the 3 × 3 system (2.1) to the following 2 × 2 system:

i
d

dz
ψ = η[H0(z) + η−1/2H1/2(z) + · · ·]ψ, (A.49)

where

H0 =
(−z 0

0 z

)
, (A.50)

H1/2 =
√

2

b2 − b1

(
0 c12

c12 0

)
, (A.51)

H1 = −
√

2

b2 − b1

( |c13|2
ρ3−ρ1

c23c13
ρ3−ρ2

c23c13
ρ3−ρ1

|c23|2
ρ3−ρ2

)
, (A.52)

H3/2 = −
√

2

b2 − b1

( c12 c23c13
(ρ3−ρ1)(ρ3−ρ2)

c12|c13|2
(ρ3−ρ1)2

c12|c23|2
(ρ3−ρ2)2

c12c23c13
(ρ3−ρ1)(ρ3−ρ2)

)
. (A.53)
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(Here eachρj is regarded as a function of the new variable z.) System (A.47) can be transformed
into a Landau–Zener model (2.20) for two levels with the invariants

µ0 =
√

2

b2 − b1
c12, ν0 =

√
2

b2 − b1
c12, (A.54)

µ1/2 = −
√

2(b2 − b1)

a(b3 − b2)
c23c13, ν1/2 = −

√
2(b2 − b1)

a(b3 − b2)
c23c13 (A.55)

by transformation (A.43) with

T0 =
(
ρ
κ13
13 0
0 ρ

κ23
23

)
, (A.56)

T1/2 =
( i(c12c23c13+c12 c23c13)

a(b3−b2)
ρ
κ13
13 log ρ13 − c12√

2(b2−b1)

1
z
(ρ
κ13
13 − ρ

κ23
23 )

− c12√
2(b2−b1)

1
z
(ρ
κ13
13 − ρ

κ23
23 ) − i(c12c23c13+c12 c23c13)

a(b3−b2)
ρ
κ23
23 log ρ23

)
, (A.57)

and the upper off-diagonal entry and the lower one of T1 being respectively given by

c23c13
√
b2 − b1√

2a(b3 − b2)

1

z
(ρ
κ13
13 − ρ

κ23−1
23 )

− ic12(c12c23c13 + c12 c23c13)

a
√

2(b2 − b1)(b3 − b2)

1

z
(ρ
κ13
13 log ρ13 − ρ

κ23
23 log ρ23), (A.58)

c23c13
√
b2 − b1√

2a(b3 − b2)

1

z
(ρ
κ13−1
13 − ρ

κ23
23 )

− ic12(c12c23c13 + c12 c23c13)

a
√

2(b2 − b1)(b3 − b2)

1

z
(ρ
κ13
13 log ρ13 − ρ

κ23
23 log ρ23), (A.59)

where ρ13 and ρ23 denote the following:

ρ13 = ρ3 − ρ1

(ρ3 − ρ1)
∣∣
z=0

=
√

2(b2 − b1)

a

b3 − b1

b3 − b2
z + 1, (A.60)

ρ23 = ρ3 − ρ2

(ρ3 − ρ2)
∣∣
z=0

=
√

2(b2 − b1)

a
z + 1. (A.61)

We finally remark that the reduction constructed in this appendix transforms a WKB
solution of (1.1) into a WKB solution of the Landau–Zener model for two levels. In the case of
a turning point t12 of system (2.1), lettingψ(j)0 (j = 1, 2) denote a WKB solution (2.25) of (2.1),
we can verify by straightforward computations that the following relations hold between ψ(j)0
and the WKB solutions ϕ(±) of the Landau–Zener model for two levels described by (2.22):

ψ
(1)
0 = S(t, η) exp

(
η

2i

∫ t

t12

(ρ1 + ρ2) dt

) (
T (z, η)ϕ(+)

0

)∣∣∣∣
z=z(t)

(1 + O(η−1)),

ψ
(2)
0 = S(t, η) exp

(
η

2i

∫ t

t12

(ρ1 + ρ2) dt

) (
T (z, η)ϕ(−)

0

)∣∣∣∣
z=z(t)

(1 + O(η−1)).

(A.62)
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